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Abstract

This paper presents chemical mass balance (CMB) analysis of organic molecular marker data to investigate the sources

of organic aerosol and PM2.5 mass in Pittsburgh, Pennsylvania. The model accounts for emissions from eight primary

source classes, including major anthropogenic sources such as motor vehicles, cooking, and biomass combustion as well as

some primary biogenic emissions (leaf abrasion products). We consider uncertainty associated with selection of source

profiles, selection of fitting species, sampling artifacts, photochemical aging, and unknown sources. In the context of the

overall organic carbon (OC) mass balance, the contributions of diesel, wood-smoke, vegetative detritus, road dust, and

coke-oven emissions are all small and well constrained; however, estimates for the contributions of gasoline-vehicle and

cooking emissions can vary by an order of magnitude. A best-estimate solution is presented that represents the vast

majority of our CMB results; it indicates that primary OC only contributes 2778% and 50714% (average7standard

deviation of daily estimates) of the ambient OC in the summer and winter, respectively. Approximately two-thirds of the

primary OC is transported into Pittsburgh as part of the regional air mass. The ambient OC that is not apportioned by the

CMB model is well correlated with secondary organic aerosol (SOA) estimates based on the EC-tracer method and

ambient concentrations of organic species associated with SOA. Therefore, SOA appears to be the major component of

OC, not only in summer, but potentially in all seasons. Primary OC dominates the OC mass balance on a small number of

nonsummer days with high OC concentrations; these events are associated with specific meteorological conditions such as

local inversions. Primary particulate emissions only contribute a small fraction of the ambient fine-particle mass, especially

in the summer.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Organic aerosol; Particulate matter; Source apportionment; Molecular markers; CMB; Regional transport; Secondary organic

aerosol; Photochemical decay; Pittsburgh Air Quality Study
e front matter r 2007 Elsevier Ltd. All rights reserved.

mosenv.2007.05.058

ing author. Tel.: +1 412 268 3657; fax: +1 412 268 3348.

ess: alr@andrew.cmu.edu (A.L. Robinson).

ress: Droplet Measurement Technologies, Boulder, CO 80301, USA.

www.elsevier.com/locate/atmosenv
dx.doi.org/10.1016/j.atmosenv.2007.05.058
mailto:alr@andrew.cmu.edu


ARTICLE IN PRESS
R. Subramanian et al. / Atmospheric Environment 41 (2007) 7414–7433 7415
1. Introduction

Organic carbon (OC) is a major component of fine
particulate matter in all regions of the atmosphere.
OC is directly emitted to the atmosphere from sources
(primary OC); it is also formed in the atmosphere
from low-volatility products produced by the oxida-
tion of gas-phase anthropogenic and/or biogenic
precursors (secondary OC or secondary organic
aerosol—SOA). Although a number of approaches
are used to estimate the primary–secondary split, each
has its shortcomings, and the relative contribution of
primary and secondary OC to the overall OC budget
remains controversial.

One approach to investigate the sources of OC is
chemical mass balance (CMB) analysis with organic
molecular markers (Schauer et al., 1996; Watson
et al., 1998a; Schauer and Cass, 2000; Zheng et al.,
2002, 2006; Fraser et al., 2003b). This approach uses
individual organic compounds such as hopanes,
cholesterol, and levoglucosan as markers to esti-
mate the contribution of emissions from major
primary sources such as gasoline and diesel vehicles,
food cooking, and wood combustion to ambient OC
and fine-particle mass. Since CMB with molecular
markers only considers primary sources, the OC not
apportioned to these sources (the unapportioned
OC) is commonly attributed to SOA.

The published CMB analyses of molecular-
marker data indicate that the relative importance
of primary sources varies widely with season and
with location. Schauer et al. (1996) attributed 85%
of the ambient OC in Los Angeles in 1982 to
primary sources. Zheng et al. (2002) attributed
essentially all of the wintertime ambient OC at both
urban and rural sites in the Southeastern US to
primary sources. During summer (Zheng et al.,
2002) and photochemical smog episodes (Schauer
et al., 2002a) the majority of the ambient OC often
cannot be apportioned to sources in the model. In
remote locations, very little of the OC is appor-
tioned to primary sources (Sheesley et al., 2004).
These trends are qualitatively consistent with spatial
and temporal characteristics of SOA formation and
reasonable correlation has been reported between
the unapportioned OC and different indicators of
secondary aerosol production (Schauer et al., 2002a;
Zheng et al., 2002; Sheesley et al., 2004). Overall
the published CMB results suggest a dominant
contribution of primary sources to OC in urban
areas, especially in winter. Such a conclusion is
supported by estimates of SOA based on using EC
as a tracer for primary organic aerosol (Turpin and
Huntzicker, 1995; Lim and Turpin, 2002; Cabada
et al., 2004; Polidori et al., 2006). However, recent
analyses of aerosol mass spectrometer (AMS) data
suggest that SOA dominates OC levels, even in
urban areas (Zhang et al., 2005; Volkamer et al.,
2006; Zhang et al., 2007). In addition, a recent CMB
study reports significant amounts of unapportioned
OC in cities in the Southeastern US in the winter
(Zheng et al., 2006).

A number of factors complicate the use of CMB
analysis with molecular-marker data to quantita-
tively constrain the overall OC budget. OC is not
fitted by the model because markers and source
profiles do not exist for SOA. The CMB approach is
sensitive to the selection of source profiles and
fitting species (Robinson et al., 2006c, d; Subrama-
nian et al., 2006a). Sampling artifacts—adsorption
of organic vapors and evaporation of organic
particles—influence filter measurements of OC
both in the ambient atmosphere and from source
emissions (Subramanian et al., 2004; Lipsky
and Robinson, 2006). Photochemical decay of
markers during regional transport may bias source
contribution estimates (Robinson et al., 2006a).
Finally, unknown sources of compounds fit by
CMB—i.e., sources not included in the model—may
bias source apportionment estimates (Robinson
et al., 2006b).

This is the final paper in a series that uses a large
database of organic molecular-marker data and
CMB to investigate the sources of organic aerosol in
Pittsburgh, Pennsylvania. Previous papers have
considered in detail the contributions of motor-
vehicle, biomass-burning, and food-cooking emis-
sions to ambient OC (Robinson et al., 2006c, d;
Subramanian et al., 2006a). Here we combine these
earlier results with estimates for other primary
sources to evaluate the overall OC budget and to
examine the relative importance of local and
regional primary sources. The analysis explicitly
considers the uncertainty associated with source-
profile variability and selection of fitting species.
The CMB-unapportioned OC is compared to
estimates of SOA based on the EC-tracer technique
(Cabada, 2003; Cabada et al., 2004; Polidori et al.,
2006) and ambient concentrations of organic
compounds associated with SOA. Uncertainties
due to unknown primary sources, photochemical
decay, and sampling artifacts are discussed. Finally,
we consider the contribution of primary emissions
to PM2.5 mass.
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2. Methods

CMB analysis was performed on the dataset
collected as part of the Pittsburgh Air Quality Study
(PAQS) (Wittig et al., 2004), using the EPA’s CMB8
model (http://www.epa.gov/scram001/). The ana-
lysis uses ambient concentrations of individual
organic compounds, PM2.5 elemental carbon, and
PM2.5 elemental composition measured on 100 days
between July 2001 and July 2002 (Wittig et al.,
2004). CMB analysis was performed using data for
individual days; all reported averages were calcu-
lated from these daily estimates.

Daily 24-h samples were collected at the Pitts-
burgh Supersite in July 2001 and most of January
2002; during other periods 24-h samples were
collected on a 1-in-6-day schedule. The Supersite
was located in a large urban park next to the
Carnegie Mellon University campus; it was not
strongly influenced by any local sources (Wittig
et al., 2004). Pittsburgh aerosol is dominated by
regional transport (Tang et al., 2004). To character-
ize fine-particle concentrations in the regional air
mass, a limited number of measurements were also
made at a rural site in Florence, Pennsylvania
(Wittig et al., 2004). This site was located 40 km
west–southwest of Pittsburgh next to a large state
park on a lightly traveled dirt road. There are no
major roads or stationary sources within several
kilometers of the Florence site. Florence is typically
upwind of Pittsburgh, and the fine-particle mass and
bulk constituents measured at the site are quite
similar to those measured at other sites in the region
(Tang et al., 2004). Thirteen sets of parallel 24-h
samples were collected in Pittsburgh and Florence
during January 2002 and four paired sets in July
2002.

PM2.5 and semivolatile organics were collected using
medium-volume quartz-filter/polyurethane-foam-plug
(PUF) samplers. Each quartz/PUF sample was
solvent extracted and the extract was analyzed by
high-resolution gas chromatography-mass spectro-
metry, providing a large dataset of daily organic
composition (Robinson et al., 2006a). For the
organic speciation measurements, identical samplers
and procedures were used at both sites. At the
Supersite, OC/EC samples were collected on quartz
filters and analyzed using a thermal/optical trans-
mission method (Subramanian et al., 2004; Sub-
ramanian et al., 2006b). Trace-metal data were
measured by inductive coupled plasma-mass spec-
trometry (ICP-MS) analysis of samples collected on
cellulose filters (Pekney et al., 2006). EC and trace
metal data for the Florence site were collected and
analyzed as part of the EPA speciation trends
network.

CMB results are sensitive to the specific combina-
tion of source profiles and fitting species (Robinson
et al., 2006b–d; Subramanian et al., 2006a). For
example, different combinations of source profiles
typically yield well-correlated source-contribution
estimates (especially if they are applied to the same
set of fitting species), but biases between the
estimates can exceed the uncertainties calculated
by CMB. This underscores the fact that CMB-
reported uncertainties are typically based on the
measurement uncertainty and quality of the fit, and
do not include the source profile variability.

To account for the uncertainty associated with
selection of source profiles and fitting species, we
present results for a large number of different CMB
models, each of which was fit to the entire dataset
using a different combination of source profiles and
fitting species. The majority of the models use the
same core set of fitting species: EC, iron, titanium,
and 22 organic markers (individually or as groups
of compounds): n-heptacosane, n-nonacosane,
n-hentriacontane and n-tritriacontane; iso-hentria-
contane, anteiso-dotriacontane; octadecanoic acid,
hexadecanoic acid, 9-hexadecenoic (palmitoleic)
acid, and cholesterol; syringaldehyde, sum of resin
acids, acetosyringone, levoglucosan; 17a(H),21b(H)-
29-norhopane, 17a(H),21b(H)-hopane, 22R+
S-17a(H),21b(H)-30-homohopane, 22R+S,17a(H),
21b(H)-30-bishomohopane; benzo[e]pyrene, inde-
no[1,2,3-cd]pyrene, benzo[g,h,i]perylene, and coro-
nene. Certain models used slightly different sets of
species, as described in the online supporting
material. OC is not included (‘‘fitted’’) by any
model because molecular markers and source
profiles for SOA are not known. Uncertainties for
individual compounds are based on relative and
absolute uncertainties determined from replicate
analysis of samples from collocated samplers.
Absolute uncertainties are based on multiples of
the minimum detection limits, while relative un-
certainties range from 710% to 730%.

Each model fits source profiles for eight source
classes: diesel vehicles, gasoline vehicles, road dust,
biomass combustion, cooking emissions, coke pro-
duction, vegetative detritus, and cigarette smoke.
Source profiles for coke-oven emissions, vegetative
detritus and road dust were developed as part of
the PAQS (Robinson et al., 2006b, 2007b); the rest

http://www.epa.gov/scram001/
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of the profiles are taken from the literature.
A complete list of the source profiles is provided
in the online Supplementary Material.

Except for the addition of metallurgical coke
production, our list of sources and marker species is
based on the original CMB analyses of molecular
marker data by Schauer et al. (1996) and Schauer
and Cass (2000). Therefore, like previous studies, we
assume that all major sources of each compound are
included in the model and the marker species are
conserved during transport from source to receptor.
These assumptions are examined in detail later in
this paper.

The sensitivity analysis considered different com-
binations of input species and source profiles. Eleven
different combinations of motor-vehicle-specific
source profiles and/or fitting species were used to
apportion OC to motor vehicles (Subramanian
et al., 2006a). Three different combinations of
biomass-smoke-specific source profiles and/or fit-
ting species were used to apportion OC to biomass
burning (Robinson et al., 2006c). Three different
combinations of cooking-specific source profiles
and/or fitting species were used to apportion OC
to food-cooking emissions (Robinson et al., 2006d).
The variability in the contribution of metallurgical
coke production is estimated using two different
profiles developed from a series of samples collected
at a fence-line site adjacent to a coke production
facility (Weitkamp et al., 2005). The variability in
the road-dust contribution is bounded by use of
urban and rural road-dust profiles as well as by
substituting calcium for iron as a fitting species. To
investigate the uncertainty in the contribution of
vegetative detritus, we fit both the PAQS and the
Los Angeles profiles (Rogge et al., 1993), as well as
different combinations of the higher odd n-alkanes.

The sensitivity analysis did not exhaustively
evaluate every possible combination of source
profiles and fitting species; for example, all eleven
different motor vehicle scenarios were not evaluated
with each of the three different food cooking
scenarios. Instead we quantified the range of
solutions for each source class using a few base sets
of profiles and compounds for the other source
classes. A more exhaustive analysis is not necessary
because of the source-specificity of molecular
markers. For example, the contribution of food-
cooking emissions is determined by cholesterol,
alkenoic acids and alkanoic acids, while motor-
vehicle emissions are determined by hopanes and
EC. Therefore, the estimated food-cooking contri-
bution changes minimally as we vary the motor-
vehicle source profiles. There are some exceptions,
most notably gasoline and diesel vehicles, which
share markers (hopanes and EC). Therefore, we
focus here on the total vehicle OC and not the
gasoline–diesel split. Also, a number of sources
contribute to ambient EC. We assessed this issue by
running the different motor vehicle scenarios with
various biomass smoke scenarios and found that it
posed a problem on only a few days with high
biomass smoke. The conclusions of this paper are
based on the results of almost 100 different CMB
models.

Our discussion of the overall OC mass balance
focuses on the results from four CMB models: best
estimate, maximum gasoline, maximum cooking,
and maximum gasoline and cooking. As discussed
below, the best-estimate model falls within the vast
majority of the solutions, while the other models
represent outlier solutions. These four models use
the same set of profiles and fitting species for the
non-vehicular and non-food-cooking source classes.
For biomass smoke, one set of profiles is used for
the fall/winter seasons and another set for the
summer/spring seasons to account for the expected
seasonal changes in the nature of biomass smoke
sources. Three profiles are used in each season to
account for the widely varying ratios of biomass
smoke markers (Robinson et al., 2006c). The fall/
winter data are fitted with the Fine et al. (2001)
eastern hemlock, eastern white pine, and red-maple
profiles. Of the viable combinations of space-
heating profiles, this combination apportions the
maximum amount of ambient OC to biomass
smoke (Robinson et al., 2006c). The summer/spring
data are fitted using three simulated open-burning
profiles: the Hays et al. (2002) mixed hardwood
forest foliage (MHFF) and Florida palmetto and
slash pine profiles; and the Hays et al. (2005) wheat-
straw profile. For the other source classes, we use
Pittsburgh-specific vegetative-detritus and road-dust
profiles (Robinson et al., 2007b), the Pittsburgh
coke-production profile that yields the maximum
OC contribution (Robinson et al., 2006b), and the
Rogge et al. (1994) cigarette-smoke profile. The
supporting online information provides more in-
formation on the CMB scenarios.

These four models use different combinations of
fitting species and source profiles to estimate
cooking and/or gasoline-vehicle emissions, the two
source categories that exhibit the most variability
(Robinson et al., 2006d; Subramanian et al., 2006a).
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For cooking emissions, the best-estimate model fits
three cooking profiles: average red-meat frying,
Schauer et al. (1999a) charbroiling, and average
seed-oil cooking; it provides the most plausible
estimate of cooking emissions (Robinson et al.,
2006d). The models that yield the maximum
cooking estimate fit an average red-meat charbroil-
ing profile and do not fit palmitic acid and stearic
acid (Robinson et al., 2006d). For vehicle emissions,
the best-estimate model fits the Northern Front
Range Air Quality Study (NFRAQS, Watson et al.,
1998a) heavy-duty diesel profile and a composite
NFRAQS gasoline profile that assumes 6.8% of the
fleet is high emitters and smokers, split evenly
(Subramanian et al., 2006a). Of the 11 different
combinations of vehicle profiles and fitting species
we have considered, this scenario yields the median
estimate of the total (gasoline+diesel) vehicular
contribution to OC. The model that yields the
maximum gasoline estimate used three source
profiles: the Schauer et al. (2002b) catalytic and
noncatalytic gasoline profiles fitted separately,
and a composite of the Schauer et al. (1999b) and
Fraser et al. (2002) diesel profiles. Two additional
n-alkanes (C24 and C26) are included as fitting
species in CMB to separate the two gasoline sources
(Subramanian et al., 2006a).

On the vast majority of the days, all of the CMB
solutions presented here meet the established good-
ness-of-fit criteria (Watson et al., 1998b). The
regression coefficients (R2) were 0.80 or higher for
over 96% of all CMB runs, with median values
above 0.90 for each solution set (CMB analysis for
all samples with a given set of profiles and fitting
species). The confidence levels (based on the w2 and
degrees of freedom) on all solutions were 95% or
better for 99.8% of the runs. The degrees of
freedom for each CMB run were between 12 and
17 depending on the number of species fitted and
the number of nonzero sources apportioned by
CMB; the CMB specifications for a good fit require
a minimum of 5. Over 90% of the fitted species in all
runs were estimated by CMB to within a factor of
two of the ambient concentration, i.e., the ratios of
CMB-calculated concentrations to the measured
values (C/M ratios) were between 0.5 and 2.0,
another requirement for a good fit. The ‘‘percentage
mass apportioned’’ criterion cannot be applied since
SOA is a significant fraction of the ambient OC and
is not included (‘‘fitted’’) in the CMB model.
Excluding the days in which the models do not
meet the CMB performance criteria does not alter
our conclusions. Table S1 in supporting online
information lists R2 and w2 values for the best-
estimate model. More information on the statistical
quality of the various solutions is also presented in
the companion papers (Robinson et al., 2006b–d;
Subramanian et al., 2006a).

3. Results and discussion

3.1. Source apportionment of primary OC and the

regional– local split

We begin our discussion of the contribution of
primary sources by considering the seasonal average
CMB results shown in Fig. 1. The boxes represent
the range of source-contribution estimates for all of
the different CMB models, except for the max-
imum-cooking and the maximum-gasoline models.
Table S2 in the supporting online material lists the
seasonal-average amount of OC apportioned by the
best-estimate, maximum and minimum models to
each source class. Table S1 lists the daily source
apportionment by the best-estimate model.

The CMB results are reasonably well constrained
for four of the source classes—diesel vehicles, wood
combustion, debris (vegetative detritus plus road
dust), and coke production. For these sources, the
seasonal average OC apportioned by the maximum
and minimum models is within a factor of 2,
which is comparable to the typical CMB-calculated
uncertainty.

The CMB results for gasoline vehicles, total
vehicles, and food cooking are not well constrained.
For example, the maximum and minimum estimates
of the average gasoline-vehicle contribution vary by
more than a factor of 20 in the summer, which is
much greater than the CMB-calculated uncertain-
ties. This variability is primarily due to differences
in markers-to-OC ratios of the different source
profiles (Robinson et al., 2006d; Subramanian et al.,
2006a). The large uncertainty in the contribution
of motor vehicles and cooking significantly affects
the overall OC mass balance, which is discussed in
detail below.

Fig. 1 indicates that the contribution of some
sources follows a seasonal pattern. Not surprisingly,
biomass smoke exhibits the most striking seasonal
pattern, with dramatically higher concentrations in
the winter and fall when temperatures are colder.
The contribution of coke-oven emissions is higher in
the fall and spring when inversions are more
common. The combined contribution of road dust
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and vegetative detritus peaks in the fall and is at a
minimum in the winter. Diesel vehicles exhibit
essentially no seasonal variability.

All of the models indicate that the absolute and
relative contributions of all source classes exhibit
significant day-to-day variability, reflecting the
changes in ambient molecular-marker concentra-
tions. This variability is illustrated by the daily
source-contribution estimates plotted in Fig. 2, in
which results from the best-estimate model are
grouped by season and then sorted by the ambient
OC concentration. Although high concentration
days occur episodically throughout the study,
organizing the data by OC concentration allows
one to compare days with similar concentrations.
All of the models predict that motor vehicles,
cooking, and debris contribute appreciable amounts
of OC on essentially every day. Biomass smoke and
coke production only contribute significant OC
on a few days. The large variability in the
contribution of coke production is due to the fact
that it is a local point source, whose influence is
strongly dependent on local meteorology. The day-
to-day contribution of biomass smoke varies widely
even in the winter when temperatures were con-
sistently cold. This variability implies that biomass
was not an important fuel for space heating in
Pittsburgh during this study (Robinson et al.,
2006c).

Fig. 3 examines the relative contribution of
regional versus local primary sources based on
paired samples collected simultaneously in Pitts-
burgh and the upwind Florence sites. Fig. 3(a) plots
the paired ambient OC measurements. OC concen-
trations in Pittsburgh are on average 30% higher
than in Florence during the winter and 20% higher
during the summer. Therefore, on a relative basis,
local sources appear to be modestly more important
in winter than in summer, but OC levels are also
40% lower in the wintertime compared to the
summer. The ambient OC data places a hard
constraint on the potential contribution of local
sources, underscoring the significant contribution
of regional transport to OC levels in the city (Tang
et al., 2004).

Fig. 3 also presents scatter plots of CMB source
contribution estimates for three major source
classes: motor vehicles (Fig. 3(b)), biomass combus-
tion (Fig. 3(c)), and cooking (Fig. 3(d)). The results
are based on CMB analysis of paired speciation
samples collected at the Pittsburgh and Florence
sites using the best-estimate model. Our conclusions
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are not sensitive to the specific CMB model, as long
as the data from both sites are analyzed using the
same profiles and fitting species.

The wintertime CMB results shown in Fig. 3
indicate modestly higher levels of primary OC in
the city than in Florence. For example, the average
wintertime vehicular OC in Florence is 2307
52 ng-Cm�3 versus 345770 ng-Cm�3 in Pittsburgh
(Fig. 3(b)). This implies that, on average, two-thirds
of the wintertime primary vehicular OC in Pitts-
burgh is associated with regional transport and only
one-third is due to local emissions. The wintertime
cooking estimates shown in Fig. 3(c) indicate a
similar regional–local split. The wintertime bio-
mass-smoke contributions at the two sites are
generally similar, except for a few days when
biomass-smoke levels are enhanced at one of the
two sites (Fig. 3(d)). The days with elevated biomass
smoke in the city are associated with hardwood
smoke, presumably due to local wood combustion
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for space heating. During PAQS, high biomass
smoke concentrations were typically observed on
winter weekend days (Robinson et al., 2006c). On
average, the wintertime CMB results indicate that
70% of the primary OC in Pittsburgh is emitted by
regional and not local sources, consistent with the
relatively uniform spatial distribution of ambient
OC (Fig. 3(a)).

Interpretation of the summertime CMB data at
the two sites is more complicated. During the
summer, biomass-smoke and meat-cooking contri-
butions at the two sites are usually comparable, but
the OC attributed to motor vehicles in Pittsburgh
exceeds that in Florence by a factor of 9, as CMB
apportions less than 50 ng-Cm�3 of the ambient OC
in Florence to motor vehicle emissions. In fact, the
peak summertime concentration of vehicular OC in
Florence is more than a factor of 2 smaller than
even the lowest winter day. One interpretation of
the Florence CMB results is that motor vehicles are
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not a major source of OC in the regional air mass in
the summer; however, this is inconsistent with the
winter data. The underlying cause of this discre-
pancy is that in the summertime ambient hopanes
concentrations are much lower in Florence than in
the city; for example, summertime norhopane levels
are three to twelve times higher in Pittsburgh than in
Florence (Robinson et al., 2006a). The low sum-
mertime concentrations of hopanes in Florence
severely constrain the OC apportioned to motor
vehicles. Robinson et al. (2006a) argues that there is
significant photochemical decay of hopanes in the
regional air mass in the summer. If true, then the
ambient hopanes in Pittsburgh during summer only
represent local vehicular emissions because the
hopanes in the regional air mass have been
photochemically degraded. Photochemical decay
of hopanes would violate one of the underlying
assumptions of CMB and is discussed in more detail
later.

3.2. Evaluation of the OC mass balance

We begin our discussion of the overall OC mass
balance by considering the contribution of the four
well-constrained source classes (diesel vehicles,
biomass smoke, debris, and coke). The maximum
CMB solution indicates that together these four
classes contribute on average 23711% of the
ambient OC (average7standard deviation of the
daily source-contribution estimates). The relative
contribution of these four source classes varies
seasonally; it is lowest in the summer, 1674% of
the daily OC, and highest in the fall, 35713% of the
daily OC. However, the key point is that on
essentially all days these well-constrained primary
sources contribute relatively little ambient OC, even
if one considers the maximum solution. Fig. 2
indicates that on only a handful of nonsummer days
do any of the four well-constrained sources con-
tribute large amounts of OC; for example the spikes
in coke-oven emissions in the spring and spikes in
biomass smoke in the fall.

The amount of OC not apportioned to primary
sources therefore depends strongly on which model is
used to represent the two poorly constrained source
classes, gasoline vehicles and cooking. This is
illustrated in Fig. 4, which compares seasonal-average
results of four CMB models: the best-estimate,
maximum-gasoline, maximum-cooking, and maxi-
mum-gasoline-and-maximum-cooking models. All
of the models show a similar seasonal pattern with
a maximum primary contribution in winter and a
minimum in summer, but they indicate very different
splits between primary and unapportioned OC. On
average these models apportion between 25% and
75% of the ambient OC to primary sources in
summer and between 50% and 140% in winter. Of
the four models shown in Fig. 4, the minimum
estimate corresponds to the best-estimate model.
The maximum primary estimate corresponds to the
model that apportions the maximum OC to both
food cooking and gasoline vehicles, the two poorly
constrained source classes.

The maximum primary estimate shown in Fig. 4
is clearly implausible as it apportions more than
140% of the wintertime OC on average. The
problems are even more apparent if one examines
the daily source contribution estimates, as the
maximum model overapportions the measured OC
by as much as a factor of 3 on many individual days.
Many of these problematic days are not low
concentration days. Overapportionment of ambient
OC by CMB analysis of molecular-marker data
has been reported by other studies; it has been
attributed to missing sources for specific markers
(Sheesley et al., 2004) or sampling artifacts (Zheng
et al., 2002). We believe that the problem is largely
due to the specific combinations of sources profiles
and fitting species, which maximize the contribution
of cooking and gasoline vehicles. Fig. 1 indicates
that, in comparison to the other solutions, models
that apportion the maximum OC to cooking and/or
vehicles appear to be outliers.

From the perspective of the seasonal-average OC
mass balance, the other three solutions (maximum
gasoline, best estimate, and maximum cooking)
plotted in Fig. 4 appear plausible. In fact, models
that apportion the maximum amount of OC to
either meat cooking or gasoline vehicles attribute
essentially all of the wintertime OC to primary
sources, consistent with the conceptual model that
primary sources are dominant in the winter.
However, more detailed examination of these two
solutions raises important concerns. For example,
on one-fifth of the winter days, the maximum-
gasoline and the maximum-cooking models appor-
tion more than 120% of the ambient OC to primary
sources. This exceeds the CMB-stipulated ‘‘allow-
able uncertainty’’ on the overall OC mass balance
(the ‘‘percentage mass apportioned’’ criterion,
720%), assuming no missing sources. These models
also apportion about 60% of ambient OC to a
single source—either gasoline vehicles or meat
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cooking—because of the specific combinations of
profiles and fitting species. In the maximum-gaso-
line model the primary OC is dominated by the low-
emitter Schauer et al. (2002b) catalytic gasoline
profile which has extremely small marker-to-OC
ratios (Subramanian et al., 2006a). One does not
expect low-emitting gasoline vehicles to be the
dominant pollutant source (Beaton et al., 1995).
Combining the Schauer et al. (2002b) catalytic
gasoline profile with any other gasoline vehicle
profile to create a more realistic fleet-average profile
dramatically reduces the amount of OC appor-
tioned to gasoline vehicles (Subramanian et al.,
2006a). Similarly, the maximum-cooking model is
based on an average charbroiling profile with very
small marker-to-OC ratios, which maximizes the
amount of ambient OC apportioned to cooking
sources (Robinson et al., 2006d). This model also
overapportions stearic and palmitic acids by more
than a factor of 3 in the winter (Robinson et al.,
2006d). These concerns diminish the probability
that either of the maximum-gasoline and the
maximum-cooking solutions is a reasonable expla-
nation of the ambient data.

Fig. 1 indicates that the best-estimate model
represents the vast majority of the solutions
considered here. This and many other models only
apportion on average 25% of the OC to primary
sources in summer and about 50% in winter. While
comparably large amounts of unapportioned OC
have been reported by previous CMB studies,
especially in rural areas (Zheng et al., 2002; Sheesley
et al., 2004), the relatively small contribution of
primary sources in an urban area, especially in
winter, is surprising. Potential explanations include
SOA, missing primary sources, sampling artifacts,
and photochemical decay of tracers; these issues are
considered in detailed in the next section.

We also examined the relative importance of
primary emissions on a daily basis, focusing on the
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days with above-average OC concentrations be-
cause of the association of adverse health effects
with elevated PM concentration. Fig. 2 shows the
daily source apportionment results for the best-
estimate solution. The high-OC days in summer are
not associated with primary emissions; however,
Fig. 2(b) indicates that peak OC levels on the
nonsummer days are generally associated with
primary emissions. The highest OC occurred on a
fall day with a strong local inversion; the best-
estimate solution indicates that primary sources
contributed 75% of the measured OC on that day.
Metallurgical coke production, a local point source,
contributed significant OC on several of these
nonsummer high-OC days. Biomass smoke con-
tributed a notable amount of OC on essentially all
wintertime days with above-average OC concentra-
tions but little OC on wintertime days with below-
average OC concentrations. These conclusions hold
across all of the solutions, even the maximum-
gasoline and maximum-cooking models.

3.3. Sources of unapportioned OC

The major conclusion from our discussion of the
CMB results is that the majority of the OC is not
apportioned to any of the eight primary sources
explicitly accounted for by the model. The vast
majority of the models only apportion around 50%
of the wintertime OC to primary sources and only
25% of it in the summer. The previous section
illustrated how selection of source profiles and
fitting species influences the amount of unappor-
tioned mass. In this section we discuss a number of
factors not explicitly considered by the CMB model
that also influence the amount of unapportioned
mass; these include SOA, unknown primary
sources, decay of molecular markers, and sampling
artifacts. Given the aforementioned concerns with
the maximum gasoline and maximum cooking
CMB models, we focus our discussion on the best-
estimate model, which represents the vast majority
of the solutions.

3.3.1. SOA

The OC not apportioned to primary sources by
CMB is often attributed to SOA. The EC-tracer
method provides an independent estimate of
SOA and has been used to analyze the PAQS
dataset (Cabada, 2003; Cabada et al., 2004; Polidori
et al., 2006). The EC-tracer method requires
estimating the aggregate OC/EC ratio for all
primary emissions, plus the OC contribution from
primary sources that do not emit EC. For the PAQS
dataset these parameters were derived from the
ambient measurements made during periods with
little evidence of photochemical activity.

Figs. 2 and 5(a) show the maximum SOA
estimate derived by Cabada (2003) and Cabada
et al. (2004) using the EC-tracer method. In the non-
summer months, Fig. 2(b) indicates that the
maximum EC-tracer SOA closes the OC mass
balance, explaining most of the ambient OC not
apportioned to primary sources by the best-estimate
model. In the summer, EC-tracer SOA is strongly
correlated with the unapportioned OC (R2 of 0.81;
Fig. 5(a)). The slope of the linear regression is 0.91
but there is a statistically significant intercept,
indicating a persistent gap in the OC mass balance
(Fig. 2(a)). This intercept could indicate unac-
counted primary sources and/or photochemical
decay of markers (the latter leading to an under-
estimate of the primary apportioned OC and an
overestimate of the unapportioned OC). Lower
estimates of SOA using the EC-tracer method
(Cabada et al., 2004; Polidori et al., 2006) indicate
zero secondary OC on many days for which CMB
indicates substantial unapportioned OC, especially
in winter. Regression analysis of the unapportioned
OC with the lower EC-tracer estimates of SOA still
yields good, but somewhat poorer, correlations.
Therefore, all of the different EC-tracer estimates
support the conclusion that much of the unappor-
tioned OC, at least in summer, is SOA.

An argument for using the maximum EC-tracer
estimate is that Pittsburgh is dominated by regional
transport. If there is a consistent background of
SOA in the regional air mass, the primary OC/EC
ratio and/or intercept used in the EC-tracer method
may be elevated above the actual values, reducing
the SOA estimated by this technique. It is difficult to
account for this regional SOA using the EC-tracer
technique because local conditions are typically used
to identify primary-dominated periods.

Ambient concentrations of organic compounds
associated with SOA provide additional evidence
that a large fraction of the unapportioned OC is
SOA. For example, Fig. 5(b) shows reasonable
correlation between the unapportioned OC and the
sum of nopinone, norpinonic acid and pinonic acid
(R2 of 0.56). These species have been measured
in smog chamber SOA experiments of a-pinene and
b-pinene ozonolysis (Yu et al, 1999; Koch et al.,
2000; Fick et al., 2003). Fig. 5(c) shows reasonable
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correlation between the unapportioned OC and
6,10,14-trimethyl-2-pentadecanone (R2 of 0.56).
This branched ketone has been used as an indicator
of biogenic SOA formation in rural or remote areas
(Simoneit and Mazurek, 1982; Simoneit et al., 1988;
Alves et al., 2001; Engling et al., 2006). It is also
formed from the incomplete combustion of pristane
and phytane present in motor vehicle fuel (Simoneit,
1985); thus, its presence in urban areas cannot
be uniquely attributed to SOA. The unapportioned
OC is similarly correlated with 1,3-benzene
dicarboxylic acid (R2 of 0.55; not shown), which
has been associated with primary vehicular emis-
sions (Fraser et al., 2003a). Finally, some correla-
tion is observed between the unapportioned OC
and oxy-PAHs such as 9-fluorenone and 9,10-
anthracenedione (R240.4, Fig. 5(d)). These PAH
oxidation products can be formed in the atmosphere
or during combustion (Ramdahl, 1983; Simoneit
et al., 1991).

Previous studies have proposed 1,2-benzenedicar-
boxylic acid and aliphatic diacids as indicators of
anthropogenic SOA (Schauer et al., 2002a; Fraser
et al., 2003a; Sheesley et al., 2004). However, the
unapportioned OC is not correlated with these
compounds (R2o0.2).
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AMS data collected in Pittsburgh also suggest
that SOA is the dominant component of the organic
aerosol in Pittsburgh. Zhang et al. (2005) estimates
that 50% of the OC in Pittsburgh in September 2002
was secondary (assuming an organic-mass-to-
organic-carbon ratio of 2.2 and 1.2 for oxygenated
organic aerosol (OOA) and hydrocarbon-like or-
ganic aerosol (HOA), respectively). This is consis-
tent with the results from the best-estimate solution
shown in Fig. 2(b) for September 2001.

Overall these multiple independent indicators of
SOA all provide strong evidence that the dominant
component of the summertime unapportioned OC,
and thus the ambient OC, is SOA. However, the
potential contribution of SOA in winter is less clear.
While the wintertime unapportioned OC is some-
what correlated with the maximum EC-tracer
estimate of SOA (R2

¼ 0.45; Fig. 5(a)), little
correlation is observed with organic compounds
commonly associated with SOA.

3.3.2. Unknown primary sources

Our CMB analysis only accounts for emissions
from eight primary source classes. Except for the
addition of metallurgical coke production, our list
of sources is largely the same as that used in other
studies. It includes major anthropogenic sources
such as motor vehicles, cooking and biomass
combustion as well as some primary biogenic
emissions (leaf abrasion products). However, there
are certainly other primary sources of OC. The fact
that most of our CMB models do not apportion a
significant fraction of the wintertime OC raises the
possibility that unaccounted primary sources may
be significant. In addition, Fig. 2(a) indicates that,
even after including the maximum EC-tracer
estimate of SOA in the OC mass balance, about
1 mg-Cm�3 of the ambient OC remains unexplained
in summer.

First we consider the potential contribution of
unaccounted local sources. Not all local industrial
sources are represented in the CMB model. The
Allegheny County PM2.5 point-source emission
inventory is dominated by facilities related to steel
production and coal-fired boilers (Hochhauser,
2004). The CMB analysis does include the largest
point-source category, metallurgical coke produc-
tion. The inventory estimates that coke production
contributes 25% of the county-wide point-source
emissions of PM2.5 mass, and 40% of coke
emissions are OC (Weitkamp et al., 2005). Although
the CMB results indicate that coke production was
an important source on a few study days (Fig. 2), it
only contributed 7079 ng-Cm�3 or 2% of the
study-average ambient OC. Therefore, one must
carefully distinguish between the daily and long-
term average contributions of a local point source.
Given the fact that the Pittsburgh Supersite was not
located close to any major local sources, it is highly
unlikely that emissions from some unaccounted
local point source strongly influenced the long-term
average OC measurements at the site. In fact, highly
time-resolved measurements made during PAQS
reveal few periods with even modestly elevated OC
spikes that would indicate strong influence of an
OC-rich plume from a local source.

Another strong piece of evidence that unac-
counted local sources are not strongly influencing
OC concentrations at the Pittsburgh site is the
ambient OC data shown in Fig. 3(a). As previously
discussed, OC concentrations at the Pittsburgh
Supersite are on average only 20–30% higher than
levels in the regional air mass (Tang et al., 2004).
This modest bump in urban OC concentrations
represents the aggregate contribution of all local
sources. Notably, this bump is substantially smaller
than the amount of unapportioned OC. Further-
more, the CMB results from the Pittsburgh and
Florence sites such as those shown in Fig. 3 indi-
cate that about half of the bump can be accounted
for by sources in the model. Therefore, a reason-
able estimate for the contribution of unaccounted
local sources is 10–15% of the long-term ambient
OC, which is a small fraction of the unappor-
tioned OC.

We cannot rule out an unaccounted, regional

primary source. Fig. 2 indicates that after account-
ing for EC-tracer estimates of SOA, a larger fraction
of the summertime OC remains unexplained com-
pared to other seasons. This pattern is consistent
with a primary biogenic source. Our CMB model
does account for primary emissions from leaf
abrasion, using the higher odd n-alkanes (C27,
C29, C31, and C33) as markers. However, this is a
minor source, contributing only 120740 ng-Cm�3

or 3% of the study-average OC. Recent studies have
suggested that biogenic materials such as fungal
cells can contribute significant fine organic aerosol
mass (Womiloju et al., 2003).

A potential explanation for the large amounts of
unapportioned OC in winter is that we are system-
atically underestimating the contribution of biomass
smoke. For example, our estimates of biomass
smoke OC in Pittsburgh are much lower than
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estimates made in the Southeast (Zheng et al., 2002).
A challenge is that source profile levoglucosan-to-
OC or levoglucosan-to-PM-mass ratios can vary
widely depending on combustion conditions and
fuel type (Hedberg and Johansson, 2006; Mazzoleni
et al., 2007), which can create substantial variability
in the CMB results. If one uses a source profile
with a small levoglucosan-to-OC ratio one can
attribute much more OC to biomass smoke. In fact
on days when biomass smoke marker concentra-
tions in Pittsburgh are high, a profile with a
very small levoglucosan-to-OC ratio will attribute
more than 100% of the ambient OC to biomass
smoke.

Robinson et al. (2006c) examined in detail the
contribution of biomass smoke to ambient OC in
Pittsburgh using the PAQS dataset. The analysis
considered a large number of fireplace, woodstove,
and simulated open burning profiles and different
combinations of molecular markers. A major
challenge with the Pittsburgh dataset is the widely
varying ambient ratios of different biomass smoke
makers. This variability means that the composition
(and the aggregate source profile) of the aged
biomass smoke influencing Pittsburgh changes
substantially from day to day, presumably because
of the poorly controlled, highly variable nature of
biomass combustion. In order to account for this
variability one needs to use different profiles for
each day, with little basis for selecting which profile
to use. Alternatively, one can include multiple
profiles simultaneously in the model. We have
adopted the second approach. Therefore, on each
day CMB calculates a weighted average contribu-
tion of three different source profiles, which
ultimately better constrains the amount of biomass
smoke OC compared to estimates based on a single
(potentially outlier) profile. Another advantage of
our approach is that CMB produces a solution of
high statistical quality for the entire dataset with the
same set of profiles. While different three-profile
combinations yield different amounts of biomass
smoke OC, much less variability is observed
compared to solutions based on a single profile.
Of the solutions derived by Robinson et al. (2006c),
here we use the scenario that apportions the
maximum OC to biomass smoke. Removing
levoglucosan from the fitting dataset does not
appreciably change the amount of OC apportioned
to biomass smoke. Therefore, it seems unlikely
that biomass OC explains the unapportioned
wintertime OC.
3.3.3. Photochemical degradation of molecular

markers

CMB analysis assumes that the compounds are
conserved as source tracers during transport from
source to the receptor. Therefore, any photochemi-
cal decay of molecular markers will reduce the
CMB source-contribution estimates, increasing the
amount of unapportioned OC. Schauer et al. (1996)
concluded that most of the compounds used in
CMB were stable in the context of Los Angeles.
Robinson et al. (2006a) presented evidence for
decay of molecular markers in the regional air mass
in the summertime. Numerous lab studies have also
reported rapid oxidation of individual organic
compounds in simple mixtures (Rudich et al.,
2007). Here we examine the solutions for evidence
of photochemical decay and discuss whether such
decay could strongly influence the amount of
unapportioned OC.

Given the strong seasonal pattern of photoche-
mical activity, significant marker decay should
cause unexpected seasonal patterns in the source
apportionment results. However, to attribute a
seasonal pattern to photochemistry one needs to
control for other factors that influence pollutant
concentrations such as source strength and pollu-
tant dispersion. Normalizing the source-contribu-
tion estimates using an inert tracer is one approach
to control for variable dispersion. This tracer should
be a condensed-phase compound so that it has a
similar atmospheric lifetime as OC. EC is commonly
used as the normalizing tracer to account for the
effects of dilution.

Fig. 6 shows the monthly averages of the CMB
results from the best-estimate model normalized by
the monthly average ambient EC. This is an
estimate of the primary OC/EC ratio. We consider
monthly averages to smooth out the significant
day-to-day variability in the solution. The primary
OC/EC ratio varies seasonally with larger values in
winter than in summer. Some of this variation is
expected; for example, the largest OC/EC ratios are
predicted in the winter and fall when wood smoke
contributes significant OC but little EC.

Fig. 2 shows there is a strong seasonal pattern in
the ratio of vehicular OC to ambient EC: 0.69 in
summer versus 0.33 in winter. This shift is driven by
seasonal changes in the ambient hopanes-to-EC
ratios (Subramanian et al., 2006a). Assuming that
the shift is due to photochemistry and not season-
ally varying source profiles, Fig. 6 suggests that
photochemistry reduces the CMB estimates of
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motor vehicle OC in summer by about a factor of 2,
on average, relative to the winter. However, average
summertime vehicular OC based on the best
estimate CMB solutions is only 186 ng-Cm�3, which
is less than a tenth of the unapportioned OC.
Therefore even doubling the summertime vehicular
contributions to account for any photochemical
decay (as a rough estimate) only negligibly influ-
ences the overall OC mass balance.

Under the assumption that markers are stable in
winter, the data shown in Fig. 6 suggests that the
markers for other sources are not being severely
depleted. Therefore, we conclude that the large
amounts of unapportioned OC are not due to
photochemical decay of molecular markers.

3.3.4. Sampling artifacts

OC measurements are often strongly influenced
by sampling artifacts (Turpin et al., 2000) and
previous studies have cited artifacts as explanation
for unexpectedly high levels of unapportioned OC
(Zheng et al., 2006). The effects of artifacts on the
CMB results were not quantitatively explored
because data are needed for both the source and
the ambient samples. The sampling artifacts for the
PAQS ambient samples were well characterized
(Subramanian et al., 2004), but information on
artifacts is not available for many source profiles.
Therefore, our CMB results are based on noncor-
rected data from undenuded quartz filters for both
source and ambient samples.
Subramanian et al. (2004) showed that there was
a net positive organic sampling artifact of �0.5 mg-
Cm�3 on the PAQS ambient samples, which
corresponds to less than 20% of the measured
OC. A positive artifact is due to adsorption of
organic vapors by the filter, causing an overestimate
of the particulate OC. Therefore, correcting the
ambient measurements for a positive artifact
reduces the amount of unapportioned OC.

Positive artifacts also appear to be the domi-
nant artifact in emission measurements of OC
(Hildemann et al., 1991; Schauer et al., 1999b,
2002b; Lipsky and Robinson, 2006; Robinson et al.,
2006c). The effect of sampling artifacts on source
profiles can be understood in terms of marker-to-
OC ratios, which are used to convert CMB results
to an OC basis. Correcting for a positive artifact
increases the source profile marker-to-OC ratios,
which decreases the amount of OC apportioned to
the source. Therefore, correcting source profiles for
a net positive artifact will increase the amount of
unapportioned OC.

The key point is that the net effect of sampling
artifacts on the unapportioned OC depends on the
relative magnitude of the artifacts on both the
source and the ambient samples. If they are
comparable, the effects of artifacts will cancel out
in the analysis. Given the relatively small positive
artifacts of the Pittsburgh samples, this seems to be
the best-case scenario (Subramanian, 2004). How-
ever, the published emissions data indicate that
positive artifacts contribute 30% or more of the OC
emissions measured with an undenuded quartz filter
(Hildemann et al., 1991; Schauer et al., 1999b,
2002b; Lipsky and Robinson, 2006; Robinson et al.,
2006c). They are therefore most likely larger than
the artifacts on the PAQS ambient samples, and
correcting both the source and the ambient samples
for artifacts may modestly increase the amount of
unapportioned OC. The bottom line is that sam-
pling artifacts do not explain the high levels of
unapportioned OC.

3.4. Source contributions to fine-particle mass

Fig. 7 presents the contribution of the primary
sources considered by CMB to fine-particle mass in
the context of the overall PM2.5 mass balance. The
figure only considers days with PM2.5 concentra-
tions greater than 25 mgm�3—approximately 25%
of the days with organic speciation data. Three-
quarters of these high-PM days occur in summer,
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a fraction that is consistent with the entire PAQS
dataset. The PM2.5 mass did not exceed 35 mgm�3

(the revised 24-h standard proposed by the US
EPA) on any of the non-summer days with organic
speciation data; this level was only exceeded on
three nonsummer days during the entire study.

In addition to the PM2.5 mass apportioned to
primary sources by the CMB model, Fig. 7 shows
an estimate of SOA—either the maximum estimate
from the EC-tracer method (Cabada 2003; Cabada
et al., 2004) or the CMB-unapportioned OC,
whichever is less, multiplied by an OM/OC ratio
of 2.2. The OM/OC ratio for SOA was taken
from the AMS results of Zhang et al. (2005). Any
remaining OC is multiplied by an OM/OC ratio of
1.8 and labeled ‘‘other primary OM’’. This repre-
sents the organic aerosol not apportioned by CMB
and not attributed to SOA, and its OM/OC ratio is
that suggested by Rees et al. (2004) for the total
Pittsburgh OC. Fig. 7 also shows the measured
contribution of major inorganic ions (sulfate,
nitrate, and ammonium). Fig. 7 does not account
for crustal elements, which contribute a small
fraction of the particle mass on high-concentration
days (Rees et al., 2004). In order to close the mass
balance, one must account for sampling artifacts
and aerosol-bound water (Rees et al., 2004). Fig. 7
plots measurements of aerosol-bound water on the
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days for which the data are available (Rees et al.,
2004; Khlystov et al., 2005). The data are not
corrected for potential sampling artifacts.

The major conclusion of Fig. 7 is that PM2.5

concentrations in Pittsburgh on high-concentration
days are dominated by secondary species. Inorganic
ions alone contribute about 50% of the particulate
mass on these high-PM days. Unapportioned
organic PM, much of which is likely SOA, is the
next biggest contributor, followed by aerosol-bound
water. Water data were available for only 13 of the
18 summer days; on these days, water contributes an
average of 17% of the PM2.5 mass. The contribution
of water is associated with acidic conditions
common in summer (Rees et al., 2004).

Primary sources considered by CMB contribute
only a small fraction of the ambient PM2.5 on
polluted days (Fig. 7). For example, the aggregate
contribution from motor vehicles, biomass burning,
cooking, coke ovens and other primary sources
included in the CMB model is less than 15% of
ambient fine PM on all high-concentration days in
summer. Their aggregate contribution ranges be-
tween 10% and 39% of the fine-particle mass on
non-summer ‘‘high-PM’’ days.

4. Conclusions

CMB analysis of molecular-marker data was
performed to quantify the contribution of primary
sources to organic aerosol concentrations in Pitts-
burgh, Pennsylvania. The model accounts for
emissions from eight primary source classes, includ-
ing major anthropogenic sources such as motor
vehicles, cooking, and biomass combustion, as well
as some primary biogenic emissions (leaf abrasion
products).

Although our results demonstrate that the CMB
results can depend strongly on the profiles and
fitting species used in the model, the major
conclusion of the study is that the eight primary
sources included in the CMB model only contribute
about 25% of the ambient OC in summer and about
50% of it in winter. Local sources not accounted for
in the model are estimated to contribute at most
another 10–15% of the ambient OC. A few
solutions do apportion substantially more OC to
primary sources, but these CMB models use gaso-
line and meat-cooking profiles that appear to be
outliers relative to other published profiles.

Our estimates for the contribution of primary
sources fall towards the low end of the range of
previous CMB analyses of molecular-marker data
performed in urban areas (Schauer et al., 1996,
2002a; Schauer and Cass, 2000; Zheng et al., 2002,
2006). However, study-to-study differences may be
due in part due to the sensitivity of the CMB results
to the selection of source profiles and fitting species.
These issues have not been routinely considered and
can strongly influence the overall CMB solution and
inferences regarding the overall OC mass balance.
We have accounted for these issues by considering a
large number of CMB models based on different
combinations of source profiles and fitting species.

During the summertime, the dominant fraction of
the unapportioned OC, and thus the total ambient
OC, appears to be SOA. The summertime unappor-
tioned OC is strongly correlated with SOA estimates
using the EC-tracer method. The summertime
unapportioned OC is also correlated with ambient
concentrations of organic species associated with
SOA and/or photochemical processing. Large
amounts of SOA are also consistent with the fact
that regional transport dominates fine-particle
concentrations in Pittsburgh, which allows signifi-
cant time for photochemical processing. While there
is some evidence for photochemical decay of
molecular markers in the summertime, this decay
does not appear to significantly alter the CMB
estimates of the total primary OC. Sampling
artifacts and unaccounted local sources also appear
to minimally influence the amount of unappor-
tioned OC.

Our summertime results contribute to the grow-
ing body of evidence that SOA dominates OC
ambient concentrations, even in urban areas. Factor
analysis of aerosol mass spectrometer (AMS)
measurements indicates that oxygenated organic
aerosol that appears strongly associated with
secondary production is the dominant component
of OC in many urban areas (Zhang et al., 2005,
2007; Volkamer et al., 2006). Recent field studies
have also observed rapid and substantial SOA
production that cannot be explained by current
SOA models (de Gouw et al., 2005; Volkamer et al.,
2006). This unexpected SOA may be explained by
oxidation of low volatility organic vapors that are
not accounted for in current models (Robinson
et al., 2007a). Accounting for SOA production from
these vapors creates a regional organic aerosol
dominated by SOA.

The vast majority of the CMB models attributed
only about half of the wintertime OC to primary
sources. Although EC-tracer estimates of SOA can
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explain much of the wintertime unapportioned OC,
little correlation is observed between the wintertime
unapportioned OC and organic species associated
with SOA. Therefore, the wintertime unapportioned
OC cannot be definitively linked with SOA. Sub-
stantial amounts of SOA in winter may appear
surprising, given the low levels of wintertime
photochemical activity in a northern city such as
Pittsburgh. A potential explanation might be
regional transport of SOA produced in more-
temperate areas of the country. Factor analysis of
wintertime AMS data collected in New York City
has indicated substantial amounts of oxygenated
organic aerosol (Zhang et al., 2007). However,
association of this wintertime oxygenated organic
aerosol with SOA is complicated by the potential
contributions of primary, oxygenated emissions
from biomass combustion.

We also examined the contribution of primary
emissions to fine-particle mass concentrations.
Primary particulate emissions from motor vehicles,
cooking, biomass burning and coke ovens only
contribute a small fraction of the ambient fine-
particle mass, especially in summer. On days with
PM2.5 mass concentrations greater than 25 mgm�3,
primary emissions contribute less than 20% of the
mass in summer and less than 40% of the mass in
winter. This underscores the importance of control
strategies focusing on precursor emissions. In
addition, human exposures on high concentration
days in Pittsburgh are dominated by secondary
aerosol. Primary OC dominates the OC mass
balance on a small number of non-summer days
with high OC concentrations; these events appear to
be related to specific meteorological conditions such
as local inversions.
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